
FlexRay controller

Author: Martin Paták

Prague, 2012

Contents

1 FlexRay controller 1

1.1 Overview . 1

1.2 Interface . 2

1.2.1 Overview . 2

1.2.2 X bus . 3

1.3 Register description . 3

1.3.1 FlexRay controller general settings 4

1.3.2 STARTUP SETUP . 4

1.3.3 STARTUP COMMANDS . 4

1.3.4 POCState . 7

1.3.5 StartupState . 8

1.3.6 WakeupStatus . 8

1.3.7 Extended . 9

1.3.8 FlexRay controller Tx registers 9

1.3.8.1 TX BUF . 10

1.3.8.2 TX HEADER x . 10

1.3.8.3 TX TRG . 11

1.3.8.4 TX MSG TYPE . 12

1.3.8.5 TX OPTION . 12

1.3.8.6 TX TIMESTAMP . 13

1.3.8.7 TX BYTES - N . 13

1.3.8.8 BYTE (N · 4 + 3) to BYTE (N · 4) 13

1.3.9 FlexRay controller Rx registers 13

1.3.9.1 ID FILTER . 14

1.3.9.2 ID MASK . 14

1.3.9.3 SOURCE . 15

i

1.3.9.4 TIMESTAMP TYPE 15

1.3.9.5 RX IRQ . 15

1.3.9.6 MSG CNT . 16

1.3.9.7 MESSAGE STATUS . 16

1.3.9.8 TIMESTAMP LOW, TIMESTAMP HIGH 16

1.3.9.9 HEADER . 16

1.3.9.10 RX BYTES - N . 16

1.3.9.11 RX READ . 17

1.3.9.12 BYTE (N · 4 + 3) to BYTE (N · 4) 17

1.4 Example . 17

1.5 Controller architecture . 19

1.5.1 Core . 19

1.5.2 Receiver . 21

1.5.3 Transmitter . 21

1.6 Conclusion . 22

Bibliography 23

A X-bus description I

ii

List of Figures

1.1 Interface . 2

1.2 Controller states [1] . 7

1.3 Rx buffer . 14

1.4 Controller architecture . 20

iii

List of Tables

1.1 Interface description . 3

1.2 Core settings - register map . 5

1.3 Behavior - register map . 6

1.4 Tx registers . 10

1.5 TX HEADER1 register description . 10

1.6 TX HEADER2 register description . 10

1.7 Timestamp micro and macro tick description 13

1.8 Rx registers . 14

1.9 SOURCE description . 15

1.10 MESSAGE STATUS description . 16

1.11 HEADER description . 17

1.12 Implementation in the FPGA . 22

A.1 X bus - description part 1 . II

A.2 X bus - description part 2 . III

A.3 X bus - description part 3 . IV

iv

Chapter 1

FlexRay controller

1.1 Overview

FlexRay controllers, available on the market, support only basic functionality (they be-

have as a normal FlexRay device). Therefore, these controllers are not appropriate for a

testing system which requires advanced functionalities.

The controller should offer standard and non-standard functionalities such as direct

controlling of states, error handling, and many others. Therefore, a new controller had

to be developed for such a system which satisfies all the functionalities mentioned in

chapter ??.

The FlexRay controller, a core written in VHDL, offers adjustable number of Rx

buffers with ID filter, an adjustable number of Tx buffers with extern or time stamp

triggering. This controller can be used as a non cold start node, leading cold start

node, passive observer, or even as a unit disturbing the communication on the bus. The

controller offers more functionalities than mentioned in here, the detailed description can

be found in the register description. The user have to decide which function to use and

how to combine them together in order to test a specific parameter of the bus, node or

cluster.

1

CHAPTER 1. FLEXRAY CONTROLLER 2

Figure 1.1: Interface

1.2 Interface

1.2.1 Overview

The FlexRay controller IP is a core with a parallel interface (32-bit). The interface is

compatible with the Nios II bus system. Therefore, the Nios II core can directly access

the registers (accessing the registers as a normal RAM memory)

The interface signals are shown in figure 1.1 and their description can be found in

table 1.1.

CHAPTER 1. FLEXRAY CONTROLLER 3

Pin Activity Description

RST HIGH Reset signal

CLK - Clock input

TIME STAMP I[63:0] - Time stamp input (63 : 0 bit)

SADR[19:0] - Address of the register

SWRITEDATA[31:0] - Data input (32 bits)

SREADDATA[31:0] - Data output (32 bits)

SWR HIGH Bus access signal : HIGH for the write transfer

SRD HIGH Bus access signal : HIGH for the read transfer

CSC HIGH Device select bit

INT I[(N-1):0] HIGH Interrupt for the TX buffer to start transfer, N -

configurable number of Tx buffers

INT O HIGH Interrupt caused by the FlexRayController

CSC HIGH Device select bit

RxD[1:0] - Receive data from the FlexRay transceiver 1,2

TxD[1:0] - Transmit data to the FlexRay transceiver 1,2

Tx enable[1:0] - Enable transceiver Tx 1,2

X bus - The bus is described in 1.2.2

Table 1.1: Interface description

1.2.2 X bus

The X bus contains many signals connected to one bus. The purpose of this bus is to

provide an easy way in the language VHDL to share data among different components.

The X bus is controlled by the FlexRay controller core. The description of bits in this bus

can be found in tables A.1, A.2, and A.3 in appendix B. All the connected components

can connect to this bus and use signals which are required.

1.3 Register description

The device is separated into three main components. Therefore, the device also contains

three main blocks of registers: General settings, Tx registers, Rx registers.

All the registers are 32-bit, however, not all bits in these registers are used. It means

that a number with a range 0 to 7 uses just 3 bits (bit 2 (MSB) to bit 0 (LSB)).

This section describes these registers and provides brief explanation for each bit.

CHAPTER 1. FLEXRAY CONTROLLER 4

1.3.1 FlexRay controller general settings

The controller general settings registers consists of two main parts. The first one sets

the basic constants of the cluster. These variables and registers are shown in table 1.2,

detailed description of this variables can be found in [1] (the variables are named the

same as in the FlexRay standard).

The second part of the controller general settings registers influence the behavior of

the controller. These registers enable to start the controller, set the controller’s states

and another functions. The list of the registers can be found in table 1.3.

1.3.2 STARTUP SETUP

bit 0 - pWakeupChannel - 0 - channel A, 1 - channel B

bit 1 - pKeySlotUsedForStartup

bit 2 - pAllowHaltDueToClock

bit 3 - vColdstartInhibit (when this option is set to ’0’ (cold start node), the user must

set an appropriate periodic startup message into one TX register).

bit 4,5 - vPOCErrorMode (’00’ = vPOC ACTIVE, ’01’ or ’10’ vPOC PASSIVE, ’11’ =

vPOC COMM HALT)

bit 7 - skip integration coldstart check - checks this state and enters immediately the

cold start join state

bit 8 - Device is active on channel A, it uses channel A for communication

bit 9 - Device is active on channel B, it uses channel B for communication

bit 10 - Start as a TT-L node. If this bit is set to ’1’, the controller starts in TT-E

mode. Two periodic messages must be set in TX registers. When this bit is ’0’, the

device starts in TT-D mode.

1.3.3 STARTUP COMMANDS

bit 0 - CONFIG COMPLETE - writing ’1’ to this register causes the controller to go

from CONFIGURATION state to READY state, in another states it is ignored

CHAPTER 1. FLEXRAY CONTROLLER 5

Offset Access Name Range Default value

0x000 R DEVICE ID - 0x12345678

0x004 R/W gdActionPointOffset 0 to 63 3

0x008 R/W gdStaticSlot 0 to 661 50

0x00C R/W gMacroPerCycle 0 to 16000 5000

0x010 R/W gNumberOfStaticSlots 0 to 1023 60

0x014 R/W gOffsetCorrectionStart 0 to 15999 4920

0x018 R/W pDecodingCorrection 0 to 143 56

0x01C R/W pdMaxDrift 0 to 1923 601

0x020 R/W pMacroInitialOffsetA 0 to 68 5

0x024 R/W pMacroInitialOffsetB 0 to 68 5

0x028 R/W pMicroPerCycle 0 to 640000 200000

0x02C R/W pOffsetCorrectionOut 0 to 15567 1201

0x030 R/W pRateCorrectionOut 0 to 1923 600

0x034 R/W gdSampleClockPeriod 0 to 7 2

0x038 R/W pClusterDriftDamping 0 to 20 1

0x03C R/W gdTSSTransmitter 0 to 15 11

0x040 R/W pMicroInitialOffsetA 0 to 239 23

0x044 R/W pMicroInitialOffsetB 0 to 239 23

0x048 R/W pdAcceptedStartupRange 0 to 1875 300

0x04C R/W pDelayCompensationA 0 to 200 1

0x050 R/W pDelayCompensationB 0 to 200 1

0x054 R zOffsetCorr -15567 to +15567 -

0x058 R zRateCorr -1923 to +1923 -

0x05C R/W pSamplesPerMicrotick 1 to 7 2

0x060 R/W gdCASRxLowMax 0 to 99 50

0x064 R/W gdWakeupSymbolTxLow 0 to 60 30

0x068 R/W gdWakeupSymbolTxIdle 0 to 180 90

0x06C R/W gdWakeupSymbolRxLow 0 to 60 50

0x070 R/W gdWakeupSymbolRxIdle 0 to 180 59

0x074 R/W gdWakeupSymbolRxWindow 0 to 301 301

0x078 R/W pWakeupPattern 0 to 63 16

0x07C R vCycleCounter 0 to 63 0

0x080 R vMacroTick 0 to 16000 0

0x084 R/W pdListenTimeout 1284 - 1283846 401202

0x088 R/W vColdstartAttempts 2 - 31 10

0x08C R/W gMaxWithoutClockCorrectionPassive 1 - 15 10

0x090 R/W gMaxWithoutClockCorrectionFatal 1 - 15 14

0x094 R/W pAllowPassiveToActive 1 - 31 20

0x098 R/W ExternRateControl 0 - 15567 0

0x09C R/W ExternOffsetControl 0 - 1923 0

0x0A0 R/W cdCAS 0 - 200 30

Table 1.2: Core settings - register map

CHAPTER 1. FLEXRAY CONTROLLER 6

Offset Access Name Range Default value

0x100 R/W STARTUP SETUP - -

0x104 W STARTUP COMMANDS - -

0x108 R POCState - -

0x10C R StartupState - -

0x110 R WakeupStatus - -

0x114 R/W Extended - -

Table 1.3: Behavior - register map

bit 1 - SEND WAKE UP REQ writing ’1’ to this register causes the controller to enter

a WAKEUP state (sends a wake up symbol to a channel specified in STARTUP

SETUP register). Active in ready state only.

bit 2 - SEND STARTUP REQ writing ’1’ to this register causes the controller to enter

the STARTUP state. Active in ready state only.

bit 3 - SEND TO CONFIG writing ’1’ to this register causes the controller to enter a

CONFIGURATION state. Active in ready state only.

bit 4 - SEND FROM HALT TO CONFIG writing ’1’ to this register causes the con-

troller to enter a CONFIGURATION state. Active in halt state only.

bit 5 - vPOCCHIHaltRequest when set the controller goes immediately to the halt state

(from any state)

The device can be in one of the states mentioned shown in figure 1.2. When the device

starts or it is restarted it automatically goes to DEFAULT CONFIG 1 state from which

it automatically goes to CONFIG state.

In CONFIG state writing CONFIG COMPLETE causes the controller to enter READY

state, from this state the controller can enter WAKE UP state by writing WAKE UP REQ

bit. The controller sends the wake up symbol and returns to READY state and gives the

result to WakeupStatus.

From REDY state the controller can enter the STARTUP state by writing STARTUP REQ.

The controller has to be configured for the startup phase. In case that the controller is a

cold start node - a message (sync and startup message, it must be sent periodically every

cycle) must be configured in the TX registers.

1In this state no value in registers is changed

CHAPTER 1. FLEXRAY CONTROLLER 7

Figure 1.2: Controller states [1]

The controller can return to READY from STARTUP state when some condition

mentioned in [1] occurs. In case that the device is successfully integrated, it enters NOR-

MAL ACTIVE state. It can enter NORMAL PASSIVE or HALT state under conditions

mentioned in the FlexRay standard.

Writing vPOCCHIHaltRequest any time causes the controller to enter HALT state.

Halt state can be escaped only by writing FROM HALT TO CONFIG. The device then

enters CONFIG state and a new configuration can be made.

1.3.4 POCState

States as defined in the FlexRay standard (’1’ means: device is in this state):

bit 0 - CONFIG

bit 1 - DEFAULT CONFIG

bit 2 - HALT

bit 3 - NORMAL ACTIVE

bit 4 - NORMAL PASIVE

CHAPTER 1. FLEXRAY CONTROLLER 8

bit 5 - READY

bit 6 - STARTUP

bit 7 - WAKEUP

1.3.5 StartupState

States as defined in the FlexRay standard (’1’ means: device is in this state):

bit 0 - UNDEFINED

bit 1 - COLDSTART LISTEN

bit 2 - INTEGRATION COLDSTART CHECK

bit 3 - COLDSTART JOIN

bit 4 - COLDSTART COLLISION RESOLUTION

bit 5 - COLDSTART CONSISTENCY CHECK

bit 6 - INTEGRATION LISTEN

bit 7 - INITIALIZE SCHEDULE

bit 8 - INTEGRATION CONSISTENCY CHECK

bit 9 - COLDSTART GAP

1.3.6 WakeupStatus

Wake up status as defined in the FlexRay standard (’1’ means device is in this state):

bit 0 - UNDEFINED

bit 1 - RECEIVED HEADER

bit 2 - RECEIVED WUP

bit 3 - COLLISION HEADER

bit 4 - COLLISION WUP

CHAPTER 1. FLEXRAY CONTROLLER 9

bit 5 - COLLISION UNKNOWN

bit 6 - TRANSMITTED

1.3.7 Extended

bit 0 - When this but is set to 1, the rate correction is disabled. The controller still

runs, however the rate correction process provides 0 (or vExternRateCorrection if

not zero).

bit 1 - When this but is set to 1, the offset correction is disabled. The controller still

runs, however the offset correction process provides (or vExternOffsetCorrection if

not zero).

bit 2 - ignoreAllErrors - all errors are ignored in the normal active state, the device stays

in normal active state (however the device must already by in this state in order to

say in this state)

bit 3 - When this bit is set to 1, then the device skips the startup phase. Writing the

SEND STARTUP REQ then causes the device to enter immediately (from UNDE-

FINED state) to normal active state (at this point also macro tick generator is

started)

1.3.8 FlexRay controller Tx registers

The Tx registers offer the user to send a wake up frame, a CAS symbol, and a normal

frame. The Tx buffer allows to send a frame once time - triggered by the timestamp or by

an outer signal. It also allows to send the data periodically to a selected channel/channels.

The number of Tx registers is adjustable in the source code (constant TX BUFFERS).

It is also possible to set the maximal length of the payload. Using the constant BUFF LENGTH

(the same length for Rx and Tx registers) 0 causes that the payload is always empty. In

case that the payload of a message is longer than BUFF LENGTH, an empty bytes will

be send out.

CHAPTER 1. FLEXRAY CONTROLLER 10

Offset Access Name Range

0x200 R/W TX BUF 0 to TX M - 1

0x204 R/W TX HEADER1 -

0x208 R/W TX HEADER2 -

0x20C R/W TX TRG -

0x210 R/W TX MSG TYPE -

0x214 R/W TX OPTION -

0x220 R/W TX TIMESTAMP LOW -

0x224 R/W TX TIMESTAMP HIGH -

0x228 R/W TX BYTES - N -

0x22C R/W BYTE (N · 4 + 3) to BYTE (N · 4) -

Table 1.4: Tx registers

bit description

28 Reserved bit (from the header)

27 Payload preamble indicator

26 Null frame indicator

25 Sync frame indicator

24 Startup frame indicator

23:13 Frame ID

12:6 Payload length

5:0 -

Table 1.5: TX HEADER1 register description

1.3.8.1 TX BUF

This read/write register selects the TX buffer 2.

1.3.8.2 TX HEADER x

The description of bits in these registers is shown in tables 1.5 and 1.6

2The number of buffers is adjustable. The maximal number of Tx registers is TX M (0 to TX M-1)

bit description

10:0 Header CRC

Table 1.6: TX HEADER2 register description

CHAPTER 1. FLEXRAY CONTROLLER 11

1.3.8.3 TX TRG

This read/write register determines which signal triggers the transmission.

bit 0 - OUTER - An outer signal (External interrupt) is used to trigger the transmission.

bit 1 - TIMEST GENERATOR - The time stamp is used to trigger the transmission. If

the time is equal to the time stamp, a message is to be transmitted.

bit 2 - TIMEST MACRO - The time stamp macro tick is used to trigger the transmission.

If the time (macrotick of the cluster and the one specified in the registers) is equal

to the time stamp, a message is to be transmitted.

bit 3 - TIMEST MACRO CYCLE - The time stamp macro tick and cycle (macroticks

are equal) is used to trigger the transmission. If the time is equal to the time stamp,

a message is to be transmitted.

bit 4 - EVERY CYCLE - Send message every cycle in the static segment according to a

proper action point offset. This bit should be set for all frames in static segment.

bit 5 - EVERY ODD CYCLE - The same as EVERY CYCLE but message is sent only

every odd cycle.

bit 6 - EVERY EVEN CYCLE - The same as EVERY CYCLE but message is sent only

every even cycle.

bit 7 - IN DYNAMIC SEGMENT - message is sent in the dynamic segment. When this

bit is set to 0, then it is sent in the static slot3.

bit 8 - TXNW - The message is sent immediately

bit 31 - BUSY - 0 - Buffer is empty

1 - Buffer is full, when the message is transmitted and the periodic sending is not

set, this bit is set to 0. The user must set this bit to 1 in order to be this tx buffer

active. The user also has to select what type of event the registers contain in the

TX MSG TYPE.

Bits, except EVERY CYCLE, EVERY ODD CYCLE, and EVERY EVEN CYCLE,

are cleared when a frame is transmitted. The bits EVERY CYCLE, EVERY ODD CYCLE,

and EVERY EVEN CYCLE are cleared only when a SINGLE MESSAGE flag is used.

3Valid for EVERY CYCLE, EVERY ODD CYCLE, and EVERY EVEN CYCLE

CHAPTER 1. FLEXRAY CONTROLLER 12

1.3.8.4 TX MSG TYPE

This register determines about the type of the frame. The following bits have the following

meaning:

bit 0 - WAKE UP - Send a wake up symbol

bit 1 - SEND CAS - Send CAS symbol

bit 2 - SINGLE MESSAGE - Send a message once when a trigger event occur

bit 3 - SEND MESAGE PERIODICALLY - Send message periodically in every cycle.

Valid only for EVERY CYCLE, EVERY ODD CYCLE, and EVERY EVEN CYCLE.

1.3.8.5 TX OPTION

This register determines to which channel the data should be send (it is possible to select

both channels). It also can influence when to send this message and another options.

bit 0 - CHANNEL A - Send message to channel A

bit 1 - CHANNEL B - Send message to channel B

bit 29 - WRONG CRC - Send a message with a wrong payload CRC (CRC is inverted)

bit 30 - SEND EARLIER - The message is sent (X macroTicks - Y µTicks) before a proper

action point.

time = action point − X + Y (1.1)

Where AP and X are in macroTick and Y is in µTicks.

The time is specified in macro and µTicks in the TX TIMESTAMP register in

the format given by table 1.7. This option is valid for EVERY CYCLE, EV-

ERY ODD CYCLE, and EVERY EVEN CYCLE option for frames in static seg-

ment only.

bit 31 - SEND LATER - The message is sent X µTicks after a proper action point. The

time is specified in µTicks in the TX TIMESTAMP register in the format given by

table 1.7. This option is valid for EVERY CYCLE, EVERY ODD CYCLE, and

EVERY EVEN CYCLE option for frames in static segment only.

The options SEND EARLIER and SEND EARLIER allows to send message earlier

or later. However, the synchronization process of this controller takes these messages as

if they would be transmitted with a zero delay.

CHAPTER 1. FLEXRAY CONTROLLER 13

bit

register 31:16 15:0

TIMESTAMP LOW microTick

TIMESTAMP HIGH cycle macrotick

Table 1.7: Timestamp micro and macro tick description

1.3.8.6 TX TIMESTAMP

This register contains the timestamps depending on the type of the TIMESTAMP TYPE.

In case that the timestamp is generated by the timestamp generator, the value in the

registers gives a 64-bit timestamp.

In case that the micro and macro tick (eventually cycle) are used, the registers have

the meaning described in table 1.7.

1.3.8.7 TX BYTES - N

The value in this register determines which data bytes can be read from the register

BYTE N · 4 + 3 - BYTE N · 4.

1.3.8.8 BYTE (N · 4 + 3) to BYTE (N · 4)

This register holds the data bytes of the frame. The selected byte range can be changed

by writing another value to the register TX BYTES - N.

1.3.9 FlexRay controller Rx registers

The Rx registers provide the user the following functionalities:

• Receive symbols

• Receive messages, filtered according to ID and another

• Timestamp events (timestamp generator, FlexRay cluster time(absolute, differen-

tial to action point))

The FlexRay Rx registers are shown in the figure 1.3. The depth of the buffer is

adjustable (in the source code, variable COUNT OF RX REG, the maximal number of

stored payload bytes for each buffer is adjustable in parameter MAX RX LENGTH in

the source code, when the message is longer than the buffer, the rest of the payload

CHAPTER 1. FLEXRAY CONTROLLER 14

Figure 1.3: Rx buffer

Offset Access Name Range

0x300 R/W ID FILTER 0 to 2047

0x304 R/W ID MASK 0 to 2047

0x308 R/W SOURCE -

0x30C R/W TIMESTAMP TYPE -

0x310 R/W RX IRQ -

0x320 R MSG CNT 0 to COUNT OF RX REG

0x324 R MESSAGE STATUS -

0x328 R TIMESTAMP LOW -

0x32C R TIMESTAMP HIGH -

0x330 R HEADER -

0x334 R/W RX BYTES - N -

0x338 W RX READ -

0x340 R BYTE (N · 4 + 3) to BYTE (N · 4) -

Table 1.8: Rx registers

is ignored). It behaves like a FIFO (data are stored in the RAM; only a pointer is

incremented). It is possible to read the oldest unread message.

The recommended minimal value of the COUNT OF RX REG variable is 4 for device

connected to both channels, 2 for device connected to only one channel.

1.3.9.1 ID FILTER

This read/write register sets the IDs to be received.

1.3.9.2 ID MASK

This read/write register sets the mask of the ID.

0 - bits must match

1 - bit does not need to match

CHAPTER 1. FLEXRAY CONTROLLER 15

bit description

0 record data from channel A

1 record data from channel B

2 record symbols

3 record all frames

4 record startup frames

Table 1.9: SOURCE description

1.3.9.3 SOURCE

The SOURCE description can be found in table 1.9. This option allows the user to catch

only desired type of events.

The user can select more than one event to record.

1.3.9.4 TIMESTAMP TYPE

The user can select type of timestamp and when the timestamp should be recorded (Only

one type of timestamp in one time is supported):

bit 0 - Record secondary TRP or time when the event occurred. Timestamp generator

is used.

bit 1 - Record secondary TRP or time when the event occurred. Micro and macro tick

are used (the macro tick generator must be running, otherwise the timestamp is 0).

bit 2 - Record the time difference between the expected time and time when the message

was received (in µTick).

1.3.9.5 RX IRQ

The user can request an interrupt when a new message was received. The following bit

can be set to cause an interrupt event.

bit 0 - Cause an interrupt when a Rx buffer is not empty

bit 1 - Cause an interrupt when a Rx buffer contains (RX M - 1) messages. There must

be an empty space in the buffer for receiving frames. Therefore, at least one empty

buffer should remain free.

bit 31 - 1 - buffer was full and a message was lost. Reading this register clears this event.

CHAPTER 1. FLEXRAY CONTROLLER 16

bit description

0 Wake up symbol received

1 CAS symbol received

2 Message received

3 Frame received on channel A

4 Frame received on channel B

5 Error in message reception

Table 1.10: MESSAGE STATUS description

Interrupt is cleared when the count of messages in the buffer is lower than the minimal

count specified in this register.

1.3.9.6 MSG CNT

This read-only register holds the number of messages in the Rx buffer.

1.3.9.7 MESSAGE STATUS

The table 1.10 shows the meaning of bits.

1.3.9.8 TIMESTAMP LOW, TIMESTAMP HIGH

This register contains the timestamps depending on the type of the TIMESTAMP TYPE.

In case that the timestamp is generated by the timestamp generator, the value in the

registers gives a 64-bit timestamp.

In case that the micro and macro tick are used, the registers have the meaning de-

scribed in table 1.7.

In case that the time difference timestamp type is used, the value is stored in TIMES-

TAMP LOW(15:0) bits.

1.3.9.9 HEADER

The HEADER register contains data as described in table 1.11.

1.3.9.10 RX BYTES - N

The value in this register determines which data bytes can be read from the register

BYTE N · 4 + 3 - BYTE N · 4.

CHAPTER 1. FLEXRAY CONTROLLER 17

bit description

28 Reserved bit (from the header)

27 Payload preamble indicator

26 Null frame indicator

25 Sync frame indicator

24 Startup frame indicator

23:13 Frame ID

12:6 Payload length

5:0 Cycle count

Table 1.11: HEADER description

1.3.9.11 RX READ

This write-only register sets the flag that this message was read. The next message (if

any) is shifted in the RX registers.

1.3.9.12 BYTE (N · 4 + 3) to BYTE (N · 4)

This read-only register holds the data bytes of the received message. The selected byte

range can be changed by writing another value to the register RX BYTES - N.

1.4 Example

This section shows an example how to start the controller as a cold start node.

The controller is switched on (or restarted), it goes through default config to config

state. The user must set the configuration of all registers mentioned in table 1.2.

As a next step, the TX registers must be set. At least one buffer has to be configured

as a sync startup frame (as the controller is a cold start node). The following code shows

this procedure:

// s e l e c t the TX b u f f e r 0

WRITE VALUE(FLEXRAY BASE, TX BUF, 0) ;

//SET the HEADER 1

WRITE VALUE(FLEXRAY BASE, TX HEADER1,

(0 << 28) // r e s e rved b i t = 0

| (0 << 27) // no preamble i n d i c

CHAPTER 1. FLEXRAY CONTROLLER 18

| (1 << 26) // n u l l frame

| (1 << 25) // synch frame

| (1 << 24) // s ta r tup frame

| (1 << 13) // ID

| (0 x10 << 6)) ; // payload length

// compute the header CRC and i n s e r t here to HEADER 2

// in t h i s case − 0xF2

WRITE VALUE(FLEXRAY BASE, TX HEADER2, 0xF2) ;

// i t i s a p e r i o d i c message − send every c y c l e

WRITE VALUE(FLEXRAY BASE, TX MSG TYPE, (1 << 3)) ;

// send message to channel A and B

WRITE VALUE(FLEXRAY BASE, TX OPTION, 3) ;

// f i l l data

f o r (i = 0 ; i < 0x10 / 4 ; i++)

{ // d iv ided by 4 because − 1 wr i t e c y c l e = wr i t i ng 4 bytes

// tx byte s e l e c t i o n N

WRITE VALUE(FLEXRAY BASE, TX BYTES N, i) ;

// tx byte N∗4+3 to N ∗ 4 , f i l l payload

WRITE VALUE(FLEXRAY BASE, TX BYTES SELECTED,

byte (N∗4+3) << 24

| byte (N∗4+2) << 16

| byte (N∗4+1) << 8

| byte (N∗4+0)) ;

}
// t r i g g e r opt ions :

WRITE VALUE(FLEXRAY BASE, TX TRG,

(1 << 4) // t r i g g e r every c y c l e (send message every c y c l e)

| (1 << 3 1)) ; //and s e t that t h i s TX r e g i s t e r i s used

The code above sets One TX register is set and used for data transmitting. This frame

is send every cycle with an ID equal to 1. The controller can start the communication as

a cold star node:

// dev i c e i s us ing channel A and B

WRITE VALUE(FLEXRAY BASE, CORE STARTUP SETUP, (3 << 8)) ;

// command f o r a c o n t r o l l e r to go from c o n f i g s t a t e to ready

CHAPTER 1. FLEXRAY CONTROLLER 19

WRITE VALUE(FLEXRAY BASE, STARTUP COMMANDS, 0 x1) ;

// go from ready to i n i t i a l i z e s ta r tup

WRITE VALUE(FLEXRAY BASE, STARTUP COMMANDS, 0 x1 << 2) ;

After a couple of cycles the controller might go to NORMAL ACTIVE state. The

state can be obtained from POCState and StartupState registers. The controller might go

back to READY state in cases described in [1]. The µController should set the controller

to try another attempt by writing a command shown on the last line in the code listing.

If an user wants to restart the controller, whatever state it is in, it can be done in the

following way:

// go from any s t a t e to HALT s t a t e − ha l t r eque s t

WRITE VALUE(FLEXRAY BASE, STARTUP COMMANDS, 0 x1 << 5) ;

// go from ha l t to d e f a u l t c o n f i g

WRITE VALUE(FLEXRAY BASE, STARTUP COMMANDS, 0 x1 << 4) ;

Note: any value is changed in the registers during the default config state. Therefore,

it is not needed to execute the default configuration after this state.

This was a short example how to set the controller as a cold start node. The attached

CD contains more examples where the controller starts as a leading cold startup node,

non-leading cold startup node, a leading cold startup mode using TT-L data transmission,

or a non-cold startup node (a node integrating to a running communication).

1.5 Controller architecture

The controller consists of 3 main parts as we can see in figure 1.4. They are Core, Rx

and Tx registers.

1.5.1 Core

The core is the most important part of the whole system. It consists of 11 subcomponents.

Here is a very brief description:

uTickGenerator is a component provide the micro tick clock and sampling frequency

of the bus

CHAPTER 1. FLEXRAY CONTROLLER 20

Figure 1.4: Controller architecture

majority sampler is a component which samples signal from the bus and provides a

filtered (voted) output as it is described in section Sampling and majority voting

in [1]

receiver receives filtered signal and strobes the signal and provides a strobed value and

last byte

symbol encoding component takes bit strobed value from the receiver and decodes

symbols such as TSS, CAS, WUS

receive state machine component receives bytes from receiver component and it de-

codes the frame. It provides a header, payload, and trailer. It also checks the

CRC.

integrationStartUp is a component which is responsible for starting of a macro gener-

ator. In case that the unit is in initialize schedule, this component starts the macro

tick generator.

macro generator is a component which provides the macro tick clock and it handles

also the clock distribution. It can be started either ”directly”, starting from zero by

the ProtocolOperationControl in case that the controller is a leading cold start node,

or it can integrate to a running cluster by signals provided by integrationStartUp

component.

CHAPTER 1. FLEXRAY CONTROLLER 21

frameExpectation provides the action points (a starting point when a message can

start) and the delay of the last received message

csp - clock synchronization process is a component responsible for synchronization. It

needs the delay of frames from frameExpectation and it computes new values the

macro generator should apply

configuration registers hold all settings of the core component, it is possible to com-

municate with this component via a parallel interface.

ProtocolOperationControl is a state machine representing and executing the state

state machine (including all main state such as READY or HOLD and it also

handles the process of STARTUP) of the whole system

Some of these components are twice in the design, because it is required them for

channel A and B.

1.5.2 Receiver

This component receives all frames from the X-bus and stores them to RAM memory (if

it is configured to store this information). It also contains registers which are directly

accessible by the µController.

1.5.3 Transmitter

Transmitter consists of three main components: send msg, CRC24 DATA8 and the main

tx reg itself.

send msg is a component which sends a symbol or byte. It signals whether it is empty

to execute a next command or it is busy.

CRC24 DATA8 is a component which computes a 24 bit CRC

tx reg glues all components together. It includes two send msg and two CRC24 DATA8

components (each for a separate channel, CRC must be computed also twice, be-

cause each channel contains a different CRC). This component also includes the

registers to which or from which it is possible by an interface.

CHAPTER 1. FLEXRAY CONTROLLER 22

total logic elements total registers total memory bits max frequency [MHz]

9886 (53%) 4897 24576 (10%) 82.42

Table 1.12: Implementation in the FPGA

1.6 Conclusion

The FlexRay controller has been tested on the Cyclone II EP2C20F484C7N with four

RX and TX registers. The compilation was made with the respect to the highest speed in

the Quartus II version 9.1. The result can be found in table 1.12. The maximal frequency

is 82.42 MHz, which is sufficient to support the maximum FlexRay bit rate of 10 Mbps.

The controller is able to integrate to a running cluster as well as initialize the com-

munication as a leading coldstart node. It contains configurable number of RX and TX

registers, it supports many options according to the standard and it even contains options

which are not allowed in the FlexRay standard. These options allow to test a wide range

of parameters of the FlexRay node or cluster.

Bibliography

[1] FlexRay Consortium, FlexRay Communications System Protocol Specification, Ver-

sion 2.1, Revision A, 2005.

23

Appendix A

X-bus description

This section contain X-bus bits description in tables A.1, A.2, and A.3.

I

APPENDIX A. X-BUS DESCRIPTION II

Bit Description

0 Tx - Channel A (non filtered)

1 Tx - Channel B (non filtered)

2 Tx - Channel A (filtered - majority voting)

3 Tx - Channel B (filtered - majority voting)

4 ChannelSampleClock - Sampling clock

5 uTick - utick clock

6 TSS symbol decoded on A

7 TSS symbol decoded on B

8 CAS symbol decoded on A

9 CAS symbol decoded on B

10 bit strobed on A

11 bit strobed on B

12 byte received on A

13 byte received on B

14 secondary TRP signal received on A

15 secondary TRP signal received on B

16 wake up symbol decoded on A

17 wake up symbol decoded on B

18 header received on A

19 header received on B

20 received frame is in odd cycle - A

21 received frame is in odd cycle - B

22 received frame’s ID on A is odd

23 received frame’s ID on B is odd

24 received frame on A is a startup frame

25 received frame on B is a startup frame

26 received frame on A is a sync. frame

27 received frame on B is a sync. frame

28 first header received on A by the component integration startup during the startup

phase

29 first header received on B by the component integration startup during the startup

phase

30 second header received on A by the component integration startup during the startup

phase

31 second header received on B by the component integration startup during the startup

phase

32 device started integration on A

33 device started integration on B

34 macro tick generator is running

35 impulse at the beginning of a new cycle when a macro generator is running

41:36 cycle counter

Table A.1: X bus - description part 1

APPENDIX A. X-BUS DESCRIPTION III

Bit Description

61:42 micro tick counter

75:62 macro tick counter

76 computing of offset in the csp component is finished

77 action point on A

78 action point on B

79 static slot finished on A

80 static slot finished on B

86:81 cycle of the received on A

92:87 cycle of the received on B

103:93 frame ID received on A

114:104 frame ID received on B

115 null frame received on A

116 null frame received on B

117 payload preambule received on A

118 payload preambule received on B

119 reserved bit received on A

120 reserved bit received on B

127:121 payload length A

134:128 payload length B

142:135 byte received - data A

150:143 byte received - data B

151 trailer received on A

152 trailer received on B

153 bus idle on A

154 bus idle on A

170:155 message delay (message received later/earlier to action point) on channel A - 16 bit

signed nuber

186:171 message delay (message received later/earlier to action point) on channel B - 16 bit

signed nuber

187 header received on A with a wrong CRC

188 header received on A with a wrong CRC

189 send CAS request

190 send WUS on channel A request

191 send WUS on channel B request

192 send startup frames only

193 wake up collision detected

194 system should remain in halt state

195 system should remain in passive state

196 macro generator can be running

197 start of the macro generator requested

Table A.2: X bus - description part 2

APPENDIX A. X-BUS DESCRIPTION IV

198 POCState is in CONFIG state

199 POCState is in DEFAULT CONFIG state

200 POCState is in HALT state

201 POCState is in NORMAL ACTIVE state

202 POCState is in NORMAL PASSIVE state

203 POCState is in READY state

204 POCState is in STARTUP state

205 POCState is in WAKEUP state

206 StartupState is in UNDEFINED state

207 StartupState is in COLDSTART LISTEN state

208 StartupState is in INTEGRATION COLDSTART CHECK state

209 StartupState is in COLDSTART JOIN state

210 StartupState is in COLDSTART COLLISION RESOLUTION state

211 StartupState is in COLDSTART CONSISTENCY CHECK state

212 StartupState is in INTEGRATION LISTEN state

213 StartupState is in INITIALIZE SCHEDULE state

214 StartupState is in INTEGRATION CONSISTENCY CHECK state

215 StartupState is in COLDSTART GAP state

216 WakeupStatus is in UNDEFINED state

217 WakeupStatus is in RECEIVED HEADER state

218 WakeupStatus is in RECEIVED WUP state

219 WakeupStatus is in COLLISION HEADER state

220 WakeupStatus is in COLLISION WUP state

221 WakeupStatus is in COLLISION UNKNOWN state

222 WakeupStatus is in TRANSMITTED state

223 start macro generator request

222 zSyncCalcResult is WITHIN BOUNDS

228:225 number of zStartUpNodes

222 start macro generator request

Table A.3: X bus - description part 3

